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Abstract. Using coherent inelastic neutron scattering we have investigated the phonon dispersion relation
of bulk hexagonal 6H-SiC. The complete set of phonon branches has been determined along the Γ−A
and 14 out of 36 branches along the Γ−M direction. The experimental data are compared to ab initio
calculations for cubic 3C-SiC transposed to 6H-SiC. Good agreement between theory and experiment is
found for the Γ−A direction. The discrepancies encountered for the Γ−M direction are interpreted as
evidence for a dependence of the dynamical response in the SiC system on the stacking sequence.

PACS. 63.20.-e Phonons in crystal lattices – 78.70.Nx Neutron inelastic scattering

1 Introduction

Silicon carbide (SiC) is a semiconductor with remarkable
chemical, thermal and mechanical stability. It is a promis-
ing candidate for a broad variety of applications such as
high-power, high-speed, and high-frequency devices which
can be operated under extreme environmental conditions,
e.g., high temperatures or high radiation [1]. These condi-
tions cannot be met by classical semiconductors. In view
of these perspectives, the basic physical properties of this
material should be studied in as much detail as possi-
ble. The knowledge of the phonon dispersion curves pro-
vides the most direct information on the lattice dynam-
ics, i.e., the (harmonic part of the) interatomic potential.
The dispersion relations are an essential input for the cal-
culation of other phonon-related properties such as the
specific heat, thermal expansion, heat conductivity, etc.
Moreover, phonon dispersion curves reflect the structure
of a material, and in the case of SiC they may add to the
insight into its polytypism. SiC is able to develop a large
variety of stable, long-range ordered structures [2]. Up to
now, more than 100 distinct polytypes have been identified
[3,4]. Since the electronic contributions to the free en-
ergy of various polytypes differ by only extremely small
amounts [5], the role of phonons in stabilizing certain
phases has been a matter of theoretical investigation [6].

Despite of the technical relevance of the material little
is known experimentally about its lattice-dynamical prop-
erties. Since the Raman results of Feldman et al. [7] and
the preliminary inelastic neutron-scattering (INS) data
of Lorenz et al. [8] no major experimental investigation
of the phonon-dispersion relation of bulk SiC has been
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carried out. Both of these experiments have been limited
to the Γ−A direction.

In this paper we present an extensive study of disper-
sion relations of bulk SiC in the 6H-structure. The exper-
imental results will be analysed in the framework of ab
initio calculations. The paper is structured as follows. A
short introduction to the SiC system including structure,
symmetry, and group-theoretical aspects (with emphasis
on the 6H structure) is given in Section 2. In Section 3
we present our experimental setup and the results of the
measurements for the Γ−A and Γ−M directions. A com-
parison with theoretical data is presented in Section 4.

2 The SiC System

2.1 Structure of SiC

Silicon carbide develops hexagonal bilayers of silicon and
carbon. The various polytypes arise from different stack-
ing sequences of these bilayers. The SiC polytypes belong
either to the cubic, hexagonal, or rhombohedral crystal
system.

In our experiment we have investigated 6H-SiC at
12 K. The hexagonal 6H structure (C4

6v) consists of 6 bi-
layers stacked in the order ABCACB along the hexagonal
axis. The primitive cell of the crystal lattice is spanned by
primitive lattice vectors ai with |a1| = |a2| = a = 3.077 Å
and |a3| = c = 15.177 Å at this temperature. The basis
of the crystal structure with 6 Si atoms and 6 C atoms
can be described with the help of vectors R pointing to Si
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Table 1. Coordinates of basis atoms in 6H-SiC.

Atom Layertype Position

Si1 A u = 0

Si2 B v =
4

24

Si3 C w =
8

24

Si4 A u =
12

24

Si5 C w =
16

24

Si6 B v =
20

24

C1 A u =
3

24

C2 B v =
7

24

C3 C w =
11

24

C4 A u =
15

24

C5 C w =
19

24

C6 B v =
23

24

or C atoms in the A, B, C bilayers,

RA = u a3, RB =
2

3
a1 +

1

3
a2 + v a3,

RC =
1

3
a1 +

2

3
a2 + w a3. (1)

The parameters u, v, and w for 6H-SiC are given in
Table 1. The Brillouin zone of 3C-SiC and of 6H-SiC in-
cluding some high-symmetry points is presented in Fig-
ure 1.

During the discussion of our results we will repeatedly
refer to the 2H and 3C polytypes which feature less atoms
per primitive unit cell than 6H. 2H denotes a hexagonal
structure with 2 molecular units per unit cell (hexagonal

stacking AB). The length of its c-axis is c(2H) ≈
1

3
c(6H).

3C stands for the zincblende structure with one molecular
unit per primitive cell (hexagonal stacking ABC). The
interlayer spacing is almost the same for all polytypes;
observed relative differences are of the order of 10−3.

Figure 2 shows a plane in reciprocal space with Bril-
louin zones both of the 3C (full lines) and 6H structure
(dashed lines). The stacking is along the cubic [111] direc-
tion. In the description of the cubic crystal, one finds the
Γ points of 6H at

Q(Γn) =
n

6
(1, 1, 1)3C (2)

(in units of 2π/a3C) with n = 0,± 1,± 2, 3, whereas
the hexagonal Γ−M direction becomes [ξ ξ 2ξ̄] (or one

Fig. 1. The cubic 3C-SiC Brillouin zone in three dimensions
including some high symmetry points. The grey area shows the
cut through the origin perpendicular to the cubic [111] direc-
tion. In this cut the larger hexagon represents the limits of the
cubic Brillouin zone, while the smaller hexagon corresponds
to the limits of the 6H-SiC Brillouin-zone (compare Fig. 2).
A three-dimensional section of the 6H-SiC Brillouin zone, in-
cluding high symmetry points, is indicated by the grey solid
lines.

Fig. 2. The experimental scattering plane in reciprocal space
perpendicular to the cubic [11̄0] direction. Brillouin zone cen-
ters are given in terms of roman digits for the cubic 3C and
by italics for the hexagonal 6H structure. The Brillouin-zone
boundaries are depicted by full lines for 3C and by dashed lines
for 6H.

of its six equivalent directions) in cubic notation with

0 ≤ ξ ≤
1

3
, see Figure 2. Note that in the plane of recip-

rocal space normal to the cubic [1, 1̄, 0] direction, shown
in Figure 2, six hexagonal Brillouin zones cover the same
area as one cubic zone.

2.2 Irreducible representations

A group-theoretical analysis of the Γ−A direction in 6H-
SiC, including the Γ - and A-points, gives six irreducible
representations, two of which are twofold degenerate. The
dynamical matrix decomposes according to four of these
representations: two non-degenerate (each with 6 modes)
and two twofold degenerate representations (each with
12 modes). Due to time-reversal symmetry in this non-
symmorphic space group additional degeneracies appear
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at the zone boundary (A-point). Two dispersion curves,
either non-degenerate or twofold degenerate, join at the
A-point with opposite slope to produce twofold or four-
fold degeneracy, respectively.

Along the Γ−M direction the dispersion relations may
be classified according to two non-degenerate irreducible
representations: one with 12 modes, the other with 24
modes. At the M -point, there are four representations,
again without degeneracy.

3 Experiment

3.1 Instrument and sample

The INS measurements have been performed on the IN1
three-axis neutron spectrometer situated at the hot source
of the Institut Laue-Langevin. We have used a Cu(220)
monochromator combined with a Cu(200) analyzer. The
collimation was 25′, 60′, 60′, 60′. Constant-Q scans have
been carried out with a fixed final wave vector at kF = 5.0,
5.75, and 6.8 Å−1. Depending on kF and the energy trans-
fer the energy resolution has varied between 3 and 11 meV
while the Q-resolution was about 0.2 Å−1. Figure 2 shows
the experimental scattering plane in reciprocal space.

Our sample was a block of crystalline SiC with dimen-
sions 20 × 40× 2 mm3 and a weight of 5.3 g. Calculated
Bragg intensities for the three polytypes 6H, 3C, and 2H
are listed in Table 2. Although the symmetry of the bulk
material is identified as 6H small contributions from the
3C as well as from other unidentified polytypes have been
present in the diffraction pattern.

3.2 Results: The Γ−A direction

The complete set of dispersion curves could be determined
by constant-Q scans. The result is presented in Figure 3 in
an extended-zone scheme, for clarity. As can be seen, the
phonon spectrum of 6H-SiC exhibits a clear gap between
76 and 95 meV. In the following discussion we will profit
from this fact and refer to the modes below and above the
gap as the “acoustic” and “optical” band, respectively.
This phrasing is rigorously correct for the 3C structure,
where only three acoustic and three optical modes exist.
In the 6H structure, there are six times as many phonon
branches due to the increased number of atoms in the
unit cell. The 18 branches of the “acoustic” band of 6H-
SiC can be considered as the backfolded branches of the 3
genuinely acoustic modes of 3C-SiC, and likewise for the
branches of the “optical” band.

A reliable identification of the modes is made possi-
ble through the combination of: (i) sufficiently good en-
ergy resolution, (ii) measurements in different Brillouin
zones, and (iii) “longitudinal” and “transverse” measure-
ment geometries. The modes with longitudinal character,
denoted “L” in Figure 3, could be observed from (0 0 24) to
(0 0 27) for the “acoustic” band and from (0 0 27)
to (0 0 30) for the “optical” band. The doubly degenerate
modes with transverse character (denoted “T”) have been
found from (3 0 0) to (3 0 3) and from (3 0 3) to (3 0 6) for
the acoustic and optical bands, respectively, see Figure 2.

Table 2. Cross section of Bragg peaks for different structures
normalized to one Si- and one C-atom, with 4π(bSi + bC)2 =
14.47, 4π(bSi − bC)2 = 0.78 and 4π(bSi

2 + bC
2) = 7.71 barn.

The Miller indices correspond to the 6H, 3C and 2H structures,
respectively. Every row of the table corresponds to exactly one
position in reciprocal space. Note that the (10l) Bragg inten-
sities are an even function of l for 2H and 6H but not for 3C.
The measurement of a sequence like (10l) therefore allows an
easy identification of cubic contaminations. Due to extinction
processes this identification can unfortunately not be done on
a quantitative basis.

6H 3C 2H

(1 1 0) 14.47 (0 2 2̄) 14.47 (1 1 0) 14.47

(0 0 3) 0 (
1

2

1

2

1

2
) 0 (0 0 1) 0

(0 0 6) 7.71 (1 1 1) 7.71 (0 0 2) 7.71

(0 0 12) 0.78 (2 2 2) 0.78 (0 0 4) 0.78

(0 0 24) 14.47 (4 4 4) 14.47 (0 0 8) 14.47

(3 0 0) 14.47 (2 2 4̄) 14.47 (3 0 0) 14.47

(3 0 1) 0 (
13

6

13

6

2̄3

6
) 0 (3 0

1

3
) 0

(3 0 2) 0 (
7

3

7

3

1̄1

3
) 0 (3 0

2

3
) 0

(3 0 3) 0 (
5

2

5

2

7̄

2
) 0 (3 0 1) 0

(1 0 4̄) 0.20 (0 0 2̄ ) 0.78 (1 0
4̄

3
) 0

(1 0 3̄) 0.94 (
1

6

1

6

1̄1

6
) 0 (1 01̄) 2.11

(1 0 2̄) 1.93 (
1

3

1

3

5̄

3
) 0 (1 0

2̄

3
) 0

(1 0 1̄) 1.05 (
1

2

1

2

3̄

2
) 0 (1 0

1̄

3
) 0

(1 0 0) 0 (
2

3

2

3

4̄

3
) 0 (1 0 0) 3.66

(1 0 1) 1.05 (
5

6

5

6

7̄

6
) 0 (1 0

1

3
) 0

(1 0 2) 1.93 (1 1 1̄) 7.71 (1 0
2

3
) 0

(1 0 3) 0.94 (
7

6

7

6

5̄

6
) 0 (1 0 1) 2.11

(1 0 4) 0.20 (
4

3

4

3

2̄

3
) 0 (1 0

4

3
) 0

As will be pointed out below, the dispersion relation
along the Γ−A direction in 6H-SiC in a first approach,
i.e., omitting changes in the interaction potentials, can be
linked to the one of 3C-SiC by the mechanism of back-
folding, see Figure 2. From the group-theoretical results
of Section 2.2 we know that the phonons at the Γ -point
have the same symmetries as those along the Γ−A di-
rection. This implies that the additional degeneracies in-
troduced by backfolding have to be lifted by the opening
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Fig. 3. Phonon dispersion relation for the Γ−A direction in
an extended-zone scheme. Experimental data points and the-
oretical lines from 3C ab initio calculations by Karch et al.
[9].

of gaps at the two “inner” Γ -points (n = ± 1 or n = ± 2 in
Eq. (2)) in the extended zone-scheme of Figure 3. These
gaps have been determined by Feldman et al. [7] using
Raman spectroscopy to be in the range of 0.5 to 1 meV.
We have not been able to resolve these small splittings.
In fact, we have not performed scans at the “inner” Γ -
points (n = ± 1,± 2 in Eq. (2)), but very close to them
along the Γ−M direction. The absence of strong splittings
indicates that the phonons with wavevector perpendicu-
lar to the bilayers exhibit little sensitivity to the specific
stacking sequence.

3.3 Results: The Γ−M direction

As a comprehensive understanding of the lattice dynam-
ics cannot be based on one symmetry direction only, we
have pursued our investigations along the Γ−M direction
which is perpendicular to Γ−A. The results are summa-
rized in Figure 4. The data points are connected through
spline interpolation curves to guide the eye and to present
an identification of the modes as explained below.

Due to the symmetry of the eigenvectors the 12 modes
belonging to one of the irreducible representations are rig-
orously invisible (i.e., they have a vanishing one-phonon
scattering cross-section) in our experimental setup, in
which the momentum transferQ lies within one of the mir-
ror planes of the 6H-structure. This selection rule strongly
facilitates the task of identifying the experimental signals

Fig. 4. Phonon dispersion relation for the Γ−M direction.
The measured data points are interpolated by spline curves to
guide the eye and to represent our identification of different
modes. Numbers and symbols, indicating “longitudinal” and
“transverse” character of the modes, on the right-hand side of
the energy axis refer to the number and characters of visible
modes leaving the Γ -point, as known from the measurement
of the Γ−A direction.
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Fig. 5. Constant-Q scans observing the “longitudinal acoustic” mode character through several anticrossings.

with the dispersion branches of the crystal. Thus, we ex-
pected to observe a maximum of 24 modes. Each of these
modes belongs to the same representation which leads to
an anticrossing of all the visible modes. The intersection
of some of the splines in Figure 4 is just an artifact of the
interpolation and has no physical origin.

Apart from the LO–TO splitting (see below), the
phonon branches connect at the Γ -point, and we can use
our rather complete knowledge of the dispersion relation
along Γ−A to infer the number and character of branches
along Γ−M starting at Γ : one “longitudinal” plus two
“transverse” modes at the “outer” Γ -points (n = 0 or
n = 3 in Eq. (2)) and two “longitudinal” plus four “trans-
verse” modes at the “inner” Γ -points (n = ± 1 or n = ± 2)
in the extended-zone scheme. Note that half of the two-
fold degenerate “transverse” modes along the Γ−A direc-
tion are invisible in our scattering geometry. Along Γ−M ,
these degeneracies are lifted, i.e., each doubly degenerate
“transverse” mode of the Γ−A direction connects to one
visible “longitudinal” and one invisible “transverse” mode
along Γ−M . The number of visible modes and their po-
larization as infered from the Γ−A direction is given by
the symbols on the right-hand side of the energy axis in
Figure 4. For example, the notation 2 “L” indicates that
we expect at this energy two slightly split modes with
longitudinal character.

While near the Γ -point the identification of the mea-
sured signals is reliable this is no longer the case when
approaching the M -point. The energy resolution of the in-
strument was insufficient to clearly resolve the close-lying
signals. Therefore, insight into the character of the modes
is impossible without an interpretation of the scattering
intensity. The 6 lowest-frequency modes at the M -point
have been observed at (0.5 0 l) with l = 24, 25, 26, 25, 26,
27 in the order of increasing frequency. They apparently
have “transverse” character, and the modes of the low-
est and the highest frequency of this “transverse” group
connect to single modes (1 “T”) at small q.

Experimentally we have been able to follow the longi-
tudinal “acoustic” branch from low frequencies, where the
dispersion is linear and the mode is correctly called acous-
tic, through several anticrossings along the [3 + ξ 0 0]-
direction. Figure 5 shows a series of constant-Q scans
with signals from this mode. The widths of the signals
reflect focussing in reciprocal space. With increasing en-
ergy transfer, i.e. with increasing incoming energy, the
resolution ellipsoid of the instrument orients more paral-
lel to the dispersion curve giving better focussing. This
favorable turning of the resolution ellipsoid as a function
of incoming energy also explains why the change from
kF = 5.0 Å−1 to kF = 5.75 Å−1 only leads to a com-
paratively weak broadening of the signal. At the zone
boundary (3.5 0 0) this single mode ends up at 68 meV,
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which is the lowest-frequency mode of the “longitudinal”
group of 6 expected modes. The three highest-frequency
modes of this group have been observed in transverse ge-
ometry in three different Brillouin zones, at (0.5 0 25),
(0.5 0 26) and (0.5 0 27) from lowest to highest fre-
quency. Unfortunately, we have not been able to clearly
follow the corresponding intensities in the interior of the
Brillouin zones. We are, therefore, not fully convinced that
we have identified all six modes in this group.

For the “optical” band we have obtained intensities
from the “longitudinal” modes in various Brillouin zones
without a clear identification as to which mode was re-
sponsible for the intensities. The experiment does not sup-
ply sufficient indications as how to draw the dispersion
curves.

The “transverse” modes in the “optical” band could
be identified more clearly. From low to high frequencies
they have been observed at [ξ 0 27], [ξ 0 28], [ξ 0 29],
and [3 + ξ 0 12]. The band due to the mode with the
highest frequency at [ξ 0 30] was very weak. Thus, we
have observed the two 1 “T” and the two 2 “T” modes
and their dispersion at small values of ξ. But near the
M -point the 6 expected modes could not be identified.

In summary, near the M -point there is a total of 18
modes in the “acoustic” band, 12 of which are visible
in the given scattering geometry, and 10 of the 12 have
been identified. In the “optical” band, again featuring 18
modes, only 4 out of 12 visible modes could be identified
near the M -point.

So far we have not discussed the possible splitting
of longitudinal and transverse optical modes as a con-
sequence of the macroscopic electric field generated by
the effective charges of Si and C. We have observed in-
deed such an LO–TO splitting in the case of the highest-
frequency optical mode. The highest optical mode in the
Γ−A direction, which has longitudinal character, joins the
Γ -point at 121 meV. By extrapolation of the highest mode
in the Γ−M direction, which has transverse character, we
find a value of about 118 meV at the Γ -point. It is rea-
sonable to assume that both modes without macroscopic
field would connect at the Γ -point and that the difference
is due to the LO–TO splitting. In the case of all the other
modes we do not see such a splitting.

4 Comparison with theory

4.1 Relation between 3C- and 6H-dispersion curves

In order to get a better understanding of the interactions
in SiC we have compared our experimental results with
theoretical calculations. An ab initio determination [9] of
the phonon dispersion relation exists only for the 3C struc-
ture.

If one neglects the difference between the force con-
stants of the ABCABC (3C) and the ABCACB (6H)
stacking, the dispersion sheets of the 6H-structure would
be a compilation of the six sets of cubic 3C dispersion
sheets with Γ -points Γn (n = 0,± 1,± 2, 3). For the Γ−A

direction this is equivalent to the procedure of “backfold-
ing” known from superlattice structures. For the Γ−M
direction this procedure resembles the construction of the
quasi-continuum of phonons in thin-film structures.

The apparent degeneracies of the modes (n = 1, 2) at
the 6H zone center which result from folding are lifted by
the actually different force constants in the two different
structures.

4.2 The Γ−A direction

The lines in Figure 3 represent the theoretical results for
the Γ−A direction obtained according to the previous sec-
tion, i.e., they show the 4 genuine dispersion curves of
3C-SiC, representing two “L” and 2 doubly degenerate
“T” branches. In this way, one generates the 12 disper-
sion curves of the “acoustic” and “optical” band of 6H-
SiC, respectively, where the “T” modes remain doubly
degenerate.

Although the calculations and experiments have been
done for different polytypes, there is good agreement be-
tween them. Therefore, the frequencies of phonons with
a wavevector perpendicular to the bilayers depend only
weakly on the stacking sequence. This insensitivity was
already evoked in context with the small gaps at the “in-
ner” Γ -points.

4.3 The Γ−M direction

By equation (2) we have defined points in the Brillouin
zone of the cubic 3C structure which correspond to Γ -
points in the hexagonal 6H structure. Now we extend this
concept and define the lines Qn(ξ) in the cubic Brillouin
zone which correspond to the phonon wave vectors q(ξ) of
the Γ −M direction in 6H, written in cubic coordinates:

Qn(ξ) =
n

6
(1, 1, 1)3C + q(ξ), n = 0,± 1,± 2, 3 (3)

with

q(ξ) = ξ(1, 1, 2̄)3C. (4)

The resulting dispersion curves are shown in Figure 6
where we present the visible modes along Γ−M . The six
different lines Qn(ξ), see equation (3), produce 6 differ-
ent sets of dispersion curves each. The fact that the sets
for n = 1, 2 are different from the sets for n = −1,−2
can be visualized by inspecting Figure 2. The 24 visible
modes (out of 36) in the 6H structure are now predicted
on the basis of the six times four corresponding modes of
the 3C structure. The apparent degeneracies at q = 0 are
an artifact due to the calculation on the basis of the cu-
bic 3C structure. In 6H these modes must show a gap, as
explained already above.

We observe good agreement between calculation and
experiment from the Γ -point to up about half way through
the Brillouin zone. This comes as no surprise given the
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Fig. 6. Measured data points of the phonon dispersion relation
in the Γ−M direction and backfolded dispersion relations of
the 3C structure, taken from Karch et al. [9]. Numbers and
symbols on the right-hand side of the energy axis have the
same meaning as in Figure 4. The different styles correspond
to different lines Qn(ξ) as defined in equation (3).

Table 3. Parameters for the rigid-ion model with Born-von
Karman forces and effective charges.

Si–C Si–Si C–C

longitudinal force constant [N/m] 233.39 23.13 11.07

transverse force constant [N/m] 11.51 2.416 1.895

Si C

effective charge [e0] 1.012 −1.012

good agreement for the Γ−A direction. But apparent dis-
crepancies occur near the M -point. The discrepancies have
to be attributed to the subtle differences in the atomic in-
teractions stemming from the actually different stacking
sequences of the two structures.

The discrepancies can be partially rationalized by sym-
metry considerations: the 6 types of branches in Figure 6
have their origin in completely different lines Qn(ξ) of the
Brillouin zone of 3C, see equation (3), and therefore cross
when simply transposed to 6H. In the actual 6H structure
such crossings are forbidden by symmetry, since all visible
modes belong to the same representation. This leads to
anticrossing and related gaps in the experimental curves.

Thus, the 3C-based theoretical data cannot be ex-
pected to give more than a semi-quantitative understand-
ing of the measured 6H dispersion. Calculations based
on the actual 6H structure are necessary in order to
correctly include the above-outlined symmetry-related
features. However, due to the complexity of the 6H-SiC
structure with 12 atoms per primitive cell ab initio cal-
culations are extremely expensive. An easier solution con-
sists in mapping the ab initio calculations [9] of 3C-SiC
onto a rigid-ion model which is then readily transposed
to the more complex 6H-structure. We have opted for a
simple model containing only Si–C, Si–Si, C–C nearest-
neighbor interactions. Coulomb interaction between the
effective charges (i.e., Born’s effective charge divided by
the high-frequency dielectric constant) of Si and C are also
included. The values for the parameters are displayed in
Table 3. Using this model, we have calculated dispersion
curves and phonon intensities. It turns out that due to
its simplicity the model does not lead to a quantitatively
improved description of the dispersion relation with the
rigid-ion model as compared to the ab initio calculations
for 3C-SiC. However, the calculated phonon branches now
show the typical features (anti-crossings etc.) of the ex-
periment. This confirms that the symmetry (or stacking
sequence) influences the dispersion curves via the mecha-
nisms outlined above even without changes in the inter-
atomic interactions themselves. Except for modes close to
the M -point in the region from 65 to 80 meV, the calcu-
lated and measured intensities agree well. Therefore, these
model calculations give us further confidence in the cor-
rectness of our assignments.
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5 Conclusion

Using inelastic neutron scattering we have investigated the
phonon-dispersion relation of 6H-SiC along the Γ−A and
Γ−M directions. In the Γ−A direction the complete set
of modes could be determined. In the Γ−M direction we
have been able to identify 14 out of 36 modes. When com-
paring the experimental data with ab initio calculations
based on the cubic 3C structure good agreement is found
for the Γ−A direction. This implies: (i) the ab initio calcu-
lations correctly describe the dynamics of the 3C-SiC sys-
tem, and (ii) the modes with a modulation vector perpen-
dicular to the bilayers are rather insensitive to the change
in interatomic interactions occasioned by the stacking pe-
riodicity. That the phonon dispersion relations are actu-
ally influenced by this periodicity is demonstrated by the
comparison of theory and experiment for the Γ−M direc-
tion. There we find a considerably worse agreement with
the ab initio calculations, i.e., the simple transposition of
dispersion relations from 3C to 6H fails. This failure con-
stitutes strong evidence for a dependence of the dynamical
response of the SiC system on the stacking sequence. Ei-
ther direct experiments or further ab initio calculations
on other SiC types are desirable to corroborate this find-
ing which, in the light of the very similar static electronic
energies, may be of considerable relevance for the under-
standing of polytypism in SiC.
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